IMO Shortlist 1998 problem N7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Prove that for each positive integer n, there exists a positive integer with the following properties: It has exactly n digits. None of the digits is 0. It is divisible by the sum of its digits.
Izvor: Međunarodna matematička olimpijada, shortlist 1998