IMO Shortlist 1998 problem N8


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a_{0},a_{1},a_{2},\ldots be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form a_{i}+2a_{j}+4a_{k}, where i,j and k are not necessarily distinct. Determine a_{1998}.
Izvor: Međunarodna matematička olimpijada, shortlist 1998