IMO Shortlist 1999 problem G1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABC be a triangle and M be an interior point. Prove that

\min\{MA,MB,MC\}+MA+MB+MC<AB+AC+BC.
Izvor: Međunarodna matematička olimpijada, shortlist 1999