IMO Shortlist 1999 problem G7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
The point M is inside the convex quadrilateral ABCD, such that MA = MC,\hspace{0,2cm}\widehat{AMB} = \widehat{MAD} + \widehat{MCD} \quad \textnormal{and} \quad \widehat{CMD} = \widehat{MCB} + \widehat{MAB}\text{.}
Prove that AB \cdot CM = BC \cdot MD and BM \cdot AD = MA \cdot CD.
Izvor: Međunarodna matematička olimpijada, shortlist 1999