IMO Shortlist 2000 problem G4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let A_1A_2 \ldots A_n be a convex polygon, n \geq 4. Prove that A_1A_2 \ldots A_n is cyclic if and only if to each vertex A_j one can assign a pair (b_j, c_j) of real numbers, j = 1, 2, \ldots, n, so that A_iA_j = b_jc_i - b_ic_j for all i, j with 1 \leq i < j \leq n.
Izvor: Međunarodna matematička olimpijada, shortlist 2000