IMO Shortlist 2000 problem N2
Dodao/la:
arhiva2. travnja 2012. For every positive integers

let

the number of all positive integers of

. Determine all positive integers

with the property:

.
%V0
For every positive integers $n$ let $d(n)$ the number of all positive integers of $n$. Determine all positive integers $n$ with the property: $d^3(n) = 4n$.
Izvor: Međunarodna matematička olimpijada, shortlist 2000