IMO Shortlist 2001 problem A5
Dodao/la:
arhiva2. travnja 2012. Find all positive integers

such that
where

and

for

.
%V0
Find all positive integers $a_1, a_2, \ldots, a_n$ such that
$$\frac{99}{100} = \frac{a_0}{a_1} + \frac{a_1}{a_2} + \cdots + \frac{a_{n-1}}{a_n},$$
where $a_0 = 1$ and $(a_{k+1}-1)a_{k-1} \geq a_k^2(a_k - 1)$ for $k = 1,2,\ldots,n-1$.
Izvor: Međunarodna matematička olimpijada, shortlist 2001