IMO Shortlist 2001 problem G3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABC be a triangle with centroid G. Determine, with proof, the position of the point P in the plane of ABC such that AP{\cdot}AG + BP{\cdot}BG + CP{\cdot}CG is a minimum, and express this minimum value in terms of the side lengths of ABC.
Izvor: Međunarodna matematička olimpijada, shortlist 2001