IMO Shortlist 2001 problem G5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABC be an acute triangle. Let DAC,EAB, and FBC be isosceles triangles exterior to ABC, with DA=DC, EA=EB, and FB=FC, such that

\angle ADC = 2\angle BAC, \quad \angle BEA= 2 \angle ABC, \quad \angle CFB = 2 \angle ACB.

Let D' be the intersection of lines DB and EF, let E' be the intersection of EC and DF, and let F' be the intersection of FA and DE. Find, with proof, the value of the sum

\frac{DB}{DD'}+\frac{EC}{EE'}+\frac{FA}{FF'}.
Izvor: Međunarodna matematička olimpijada, shortlist 2001