IMO Shortlist 2001 problem N4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let p \geq 5 be a prime number. Prove that there exists an integer a with 1 \leq a \leq p-2 such that neither a^{p-1}-1 nor (a+1)^{p-1}-1 is divisible by p^2.
Izvor: Međunarodna matematička olimpijada, shortlist 2001