IMO Shortlist 2003 problem G3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABC be a triangle, and P a point in the interior of this triangle. Let D, E, F be the feet of the perpendiculars from the point P to the lines BC, CA, AB, respectively. Assume that

AP^{2}+PD^{2}=BP^{2}+PE^{2}=CP^{2}+PF^{2}.

Furthermore, let I_{a}, I_{b}, I_{c} be the excenters of triangle ABC. Show that the point P is the circumcenter of triangle I_{a}I_{b}I_{c}.
Izvor: Međunarodna matematička olimpijada, shortlist 2003