IMO Shortlist 2004 problem A7


Kvaliteta:
  Avg: 4,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let {a_1,a_2,\dots,a_n} be positive real numbers, {n>1}. Denote by g_n their geometric mean, and by A_1,\,A_2,\,\dots,\,A_n the sequence of arithmetic means defined by
A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n.
Let G_n be the geometric mean of A_1,A_2,\dots,A_n. Prove the inequality n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 and establish the cases of equality.
Izvor: Međunarodna matematička olimpijada, shortlist 2004