IMO Shortlist 2005 problem A3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Four real numbers p, q, r, s satisfy p+q+r+s = 9 and p^{2}+q^{2}+r^{2}+s^{2}= 21. Prove that there exists a permutation \left(a,b,c,d\right) of \left(p,q,r,s\right) such that ab-cd \geq 2.
Izvor: Međunarodna matematička olimpijada, shortlist 2005