IMO Shortlist 2005 problem A4
Dodao/la:
arhiva2. travnja 2012. Find all functions

such that

for all real numbers

and

.
%V0
Find all functions $f: \mathbb{R}\to\mathbb{R}$ such that $f\left(x+y\right)+f\left(x\right)f\left(y\right)=f\left(xy\right)+2xy+1$ for all real numbers $x$ and $y$.
Izvor: Međunarodna matematička olimpijada, shortlist 2005