IMO Shortlist 2005 problem N3
Dodao/la:
arhiva2. travnja 2012. Let

,

,

,

,

,

be positive integers and let

.
Suppose that the number

divides

and

. Prove that

is composite.
%V0
Let $a$, $b$, $c$, $d$, $e$, $f$ be positive integers and let $S = a+b+c+d+e+f$.
Suppose that the number $S$ divides $abc+def$ and $ab+bc+ca-de-ef-df$. Prove that $S$ is composite.
Izvor: Međunarodna matematička olimpijada, shortlist 2005