IMO Shortlist 2005 problem N6
Dodao/la:
arhiva2. travnja 2012. Let
,
be positive integers such that
is a multiple of
for all positive integers
. Prove that
.
%V0
Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.
Izvor: Međunarodna matematička olimpijada, shortlist 2005