IMO Shortlist 2005 problem N6
Dodao/la:
arhiva2. travnja 2012. Let

,

be positive integers such that

is a multiple of

for all positive integers

. Prove that

.
%V0
Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.
Izvor: Međunarodna matematička olimpijada, shortlist 2005