IMO Shortlist 2006 problem A2
Dodao/la:
arhiva2. travnja 2012. Let

,

,

,

be a sequence of reals such that

and

for all

.
Show that

for all

.
%V0
Let $a_{0}$, $a_{1}$, $a_{2}$, $...$ be a sequence of reals such that $a_{0} = - 1$ and
$a_{n} + \frac {a_{n - 1}}{2} + \frac {a_{n - 2}}{3} + ... + \frac {a_{1}}{n} + \frac {a_{0}}{n + 1} = 0$ for all $n\geq 1$.
Show that $a_{n} > 0$ for all $n\geq 1$.
Izvor: Međunarodna matematička olimpijada, shortlist 2006