IMO Shortlist 2006 problem A2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a_{0}, a_{1}, a_{2}, ... be a sequence of reals such that a_{0} = - 1 and

a_{n} + \frac {a_{n - 1}}{2} + \frac {a_{n - 2}}{3} + ... + \frac {a_{1}}{n} + \frac {a_{0}}{n + 1} = 0 for all n\geq 1.

Show that a_{n} > 0 for all n\geq 1.
Izvor: Međunarodna matematička olimpijada, shortlist 2006