IMO Shortlist 2006 problem G3


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Consider a convex pentagon ABCDE such that
\angle BAC = \angle CAD = \angle DAE\ \ \ ,\ \ \ \angle ABC = \angle ACD = \angle ADE
Let P be the point of intersection of the lines BD and CE. Prove that the line AP passes through the midpoint of the side CD.
Izvor: Međunarodna matematička olimpijada, shortlist 2006