IMO Shortlist 2006 problem G8


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABCD be a convex quadrilateral. A circle passing through the points A and D and a circle passing through the points B and C are externally tangent at a point P inside the quadrilateral. Suppose that \angle{PAB}+\angle{PDC}\leq  90^\circ and \angle{PBA}+\angle{PCD}\leq  90^\circ.
Prove that AB+CD \geq  BC+AD.
Izvor: Međunarodna matematička olimpijada, shortlist 2006