IMO Shortlist 2006 problem N2
Dodao/la:
arhiva2. travnja 2012. For

let

be the number whose

-th digit after the decimal point is the

-th digit after the decimal point of

. Show that if

is rational then so is

.
%V0
For $x \in (0, 1)$ let $y \in (0, 1)$ be the number whose $n$-th digit after the decimal point is the $2^{n}$-th digit after the decimal point of $x$. Show that if $x$ is rational then so is $y$.
Izvor: Međunarodna matematička olimpijada, shortlist 2006