IMO Shortlist 2006 problem N3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,5
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
We define a sequence \left(a_{1},a_{2},a_{3},...\right) by setting
a_{n} = \frac {1}{n}\left(\left[\frac {n}{1}\right] + \left[\frac {n}{2}\right] + \cdots + \left[\frac {n}{n}\right]\right)
for every positive integer n. Hereby, for every real x, we denote by \left[x\right] the integral part of x (this is the greatest integer which is \leq x).

a) Prove that there is an infinite number of positive integers n such that a_{n + 1} > a_{n}.
b) Prove that there is an infinite number of positive integers n such that a_{n + 1} < a_{n}.
Izvor: Međunarodna matematička olimpijada, shortlist 2006