IMO Shortlist 2007 problem A6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a_1, a_2, \ldots, a_{100} be nonnegative real numbers such that a^2_1 + a^2_2 + \ldots + a^2_{100} = 1. Prove that
a^2_1 \cdot a_2 + a^2_2 \cdot a_3 + \ldots + a^2_{100} \cdot a_1 < \frac {12}{25}.
Author: Marcin Kuzma, Poland
Izvor: Međunarodna matematička olimpijada, shortlist 2007