IMO Shortlist 2007 problem G3


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 7.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
The diagonals of a trapezoid ABCD intersect at point P. Point Q lies between the parallel lines BC and AD such that \angle AQD = \angle CQB, and line CD separates points P and Q. Prove that \angle BQP = \angle DAQ.

Author: unknown author, Ukraine
Source: Međunarodna matematička olimpijada, shortlist 2007