IMO Shortlist 2008 problem A5


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 7,7
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a, b, c, d be positive real numbers such that abcd = 1 and a + b + c + d > \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{d} + \dfrac{d}{a}. Prove that
a + b + c + d < \dfrac{b}{a} + \dfrac{c}{b} + \dfrac{d}{c} + \dfrac{a}{d}
Proposed by Pavel Novotný, Slovakia
Izvor: Međunarodna matematička olimpijada, shortlist 2008