IMO Shortlist 2008 problem A6


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let f: \mathbb{R}\to\mathbb{N} be a function which satisfies f\left(x + \dfrac{1}{f(y)}\right) = f\left(y + \dfrac{1}{f(x)}\right) for all x, y\in\mathbb{R}. Prove that there is a positive integer which is not a value of f.

Proposed by Žymantas Darbėnas (Zymantas Darbenas), Lithania
Izvor: Međunarodna matematička olimpijada, shortlist 2008