IMO Shortlist 2008 problem A7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Prove that for any four positive real numbers a, b, c, d the inequality
\frac {(a - b)(a - c)}{a + b + c} + \frac {(b - c)(b - d)}{b + c + d} + \frac {(c - d)(c - a)}{c + d + a} + \frac {(d - a)(d - b)}{d + a + b} \geqslant 0
holds. Determine all cases of equality.

Author: Darij Grinberg (Problem Proposal), Christian Reiher (Solution), Germany
Izvor: Međunarodna matematička olimpijada, shortlist 2008