IMO Shortlist 2008 problem N3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a_0, a_1, a_2, \ldots be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, \gcd (a_i, a_{i + 1}) > a_{i - 1}. Prove that a_n\ge 2^n for all n\ge 0.

Proposed by Morteza Saghafian, Iran
Izvor: Međunarodna matematička olimpijada, shortlist 2008