IMO Shortlist 2008 problem N5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
For every n\in\mathbb{N} let d(n) denote the number of (positive) divisors of n. Find all functions f: \mathbb{N}\to\mathbb{N} with the following properties: d\left(f(x)\right) = x for all x\in\mathbb{N}. f(xy) divides (x - 1)y^{xy - 1}f(x) for all x, y\in\mathbb{N}.

Proposed by Bruno Le Floch, France
Izvor: Međunarodna matematička olimpijada, shortlist 2008