IMO Shortlist 2009 problem C3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let n be a positive integer. Given a sequence \epsilon_1, ..., \epsilon_{n - 1} with \epsilon_i = 0 or \epsilon_i = 1 for each i = 1, ..., n - 1, the sequences a_0, ..., a_n and b_0, ..., b_n are constructed by the following rules: a_0 = b_0 = 1, a_1 = b_1 = 7,
a_{i + 1} = \left\{\begin{array}{cl}2a_{i - 1} + 3a_i\text{,} & \text{if } \epsilon_i = 0 \text{,}\\3a_{i - 1} + a_i\text{,} & \text{if } \epsilon_{i}= 1,\end{array}\right.
for each i = 1, ..., n - 1,
b_{i + 1} = \left\{\begin{array}{cl}2b_{i - 1} + 3b_i\text{,} & \text{if } \epsilon_{n - i} = 0 \text{,}\\3b_{i - 1} + b_i\text{,} & \text{if } \epsilon_{n - i} = 1 \text{,}\end{array}\right.
for each i = 1, ..., n - 1.

Prove that a_n = b_n.

Proposed by Ilya Bogdanov, Russia
Izvor: Međunarodna matematička olimpijada, shortlist 2009