IMO Shortlist 2009 problem G7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABC be a triangle with incenter I and let X, Y and Z be the incenters of the triangles BIC, CIA and AIB, respectively. Let the triangle XYZ be equilateral. Prove that ABC is equilateral too.

Proposed by Mirsaleh Bahavarnia, Iran
Izvor: Međunarodna matematička olimpijada, shortlist 2009