IMO Shortlist 2009 problem G8


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABCD be a circumscribed quadrilateral. Let g be a line through A which meets the segment BC in M and the line CD in N. Denote by I_1, I_2 and I_3 the incenters of \triangle ABM, \triangle MNC and \triangle NDA, respectively. Prove that the orthocenter of \triangle I_1I_2I_3 lies on g.

Proposed by Nikolay Beluhov, Bulgaria
Izvor: Međunarodna matematička olimpijada, shortlist 2009