IMO Shortlist 2011 problem A2


Kvaliteta:
  Avg: 5,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Determine all sequences (x_1,x_2,\ldots,x_{2011}) of positive integers, such that for every positive integer n there exists an integer a with \sum^{2011}_{j=1} j  x^n_j = a^{n+1} + 1

Proposed by Warut Suksompong, Thailand
Izvor: Međunarodna matematička olimpijada, shortlist 2011