IMO Shortlist 2011 problem C4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Determine the greatest positive integer k that satisfies the following property: The set of positive integers can be partitioned into k subsets A_1, A_2, \ldots, A_k such that for all integers n \geq 15 and all i \in \{1, 2, \ldots, k\} there exist two distinct elements of A_i whose sum is n.

Proposed by Igor Voronovich, Belarus
Izvor: Međunarodna matematička olimpijada, shortlist 2011