IMO Shortlist 2011 problem G2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Let A_1A_2A_3A_4 be a non-cyclic quadrilateral. Let O_1 and r_1 be the circumcentre and the circumradius of the triangle A_2A_3A_4. Define O_2,O_3,O_4 and r_2,r_3,r_4 in a similar way. Prove that
\frac{1}{O_1A_1^2-r_1^2}+\frac{1}{O_2A_2^2-r_2^2}+\frac{1}{O_3A_3^2-r_3^2}+\frac{1}{O_4A_4^2-r_4^2}=0.

Proposed by Alexey Gladkich, Israel
Izvor: Međunarodna matematička olimpijada, shortlist 2011