IMO Shortlist 2011 problem N2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Consider a polynomial P(x) =  \prod^9_{j=1}(x+d_j), where d_1, d_2, \ldots d_9 are nine distinct integers. Prove that there exists an integer N, such that for all integers x \geq N the number P(x) is divisible by a prime number greater than 20.

Proposed by Luxembourg
Izvor: Međunarodna matematička olimpijada, shortlist 2011