IMO Shortlist 2011 problem N6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,5
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Let P(x) and Q(x) be two polynomials with integer coefficients, such that no nonconstant polynomial with rational coefficients divides both P(x) and Q(x). Suppose that for every positive integer n the integers P(n) and Q(n) are positive, and 2^{Q(n)}-1 divides 3^{P(n)}-1. Prove that Q(x) is a constant polynomial.

Proposed by Oleksiy Klurman, Ukraine
Izvor: Međunarodna matematička olimpijada, shortlist 2011