IMO Shortlist 2011 problem N7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Let p be an odd prime number. For every integer a, define the number S_a = \sum^{p-1}_{j=1} \frac{a^j}{j}. Let m,n \in \mathbb{Z}, such that S_3 + S_4 - 3S_2 = \frac{m}{n}. Prove that p divides m.

Proposed by Romeo Meštrović, Montenegro
Izvor: Međunarodna matematička olimpijada, shortlist 2011