IMO Shortlist 2011 problem N8


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Let k \in \mathbb{Z}^+ and set n=2^k+1. Prove that n is a prime number if and only if the following holds: there is a permutation a_{1},\ldots,a_{n-1} of the numbers 1,2, \ldots, n-1 and a sequence of integers g_{1},\ldots,g_{n-1}, such that n divides g^{a_i}_i - a_{i+1} for every i \in \{1,2,\ldots,n-1\}, where we set a_n = a_1.

Proposed by Vasily Astakhov, Russia
Izvor: Međunarodna matematička olimpijada, shortlist 2011