IMO Shortlist 2012 problem A2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
3. studenoga 2013.
LaTeX PDF
Let \mathbb{Z} and \mathbb{Q} be the sets of integers and rationals respectively.
a) Does there exist a partition of \mathbb{Z} into three non-empty subsets A,B,C such that the sets A+B, B+C, C+A are disjoint?
b) Does there exist a partition of \mathbb{Q} into three non-empty subsets A,B,C such that the sets A+B, B+C, C+A are disjoint?

Here X+Y denotes the set \{ x+y : x \in X, y \in Y \}, for X,Y \subseteq \mathbb{Z} and for X,Y \subseteq \mathbb{Q}.
Izvor: Međunarodna matematička olimpijada, shortlist 2012