IMO Shortlist 2012 problem N3
Dodao/la:
arhiva3. studenoga 2013. Determine all integers

such that every

with

divides the binomial coefficient

.
%V0
Determine all integers $m \geq 2$ such that every $n$ with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2n}$.
Izvor: Međunarodna matematička olimpijada, shortlist 2012