IMO Shortlist 2012 problem N8
Dodao/la:
arhiva3. studenoga 2013. Prove that for every prime
and every integer
, there exist two integers
and
such that
divides
.
%V0
Prove that for every prime $p>100$ and every integer $r$, there exist two integers $a$ and $b$ such that $p$ divides $a^2+b^5-r$.
Izvor: Međunarodna matematička olimpijada, shortlist 2012