IMO Shortlist 2014 problem A1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
7. svibnja 2017.
LaTeX PDF

Let z_0 < z_1 < z_2 < \cdots be an infinite sequence of positive integers. Prove that there exists a unique integer n \geq 1 such that z_n < \frac{z_0 + z_1 + \cdots + z_n}{n} \leq z_{n+1} \text{.}

(Austria)

Izvor: https://www.imo-official.org/problems/IMO2014SL.pdf