IMO Shortlist 2014 problem N1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
7. svibnja 2017.
LaTeX PDF

Let n \geq 2 be an integer, and let A_n be the set A_n = \{ 2^n - 2^k \, | \, k \in \mathbb{Z}, 0 \leq k < n \} \text{.} Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of A_n.

(Serbia)

Izvor: https://www.imo-official.org/problems/IMO2014SL.pdf