IMO Shortlist 2015 problem A1
Dodao/la:
arhiva30. kolovoza 2018. Suppose that a sequence $a_1,a_2,\ldots$ of positive real numbers satisfies \[a_{k+1}\geq\frac{ka_k}{a_k^2+(k-1)}\]for every positive integer $k$. Prove that $a_1+a_2+\ldots+a_n\geq n$ for every $n\geq2$.
\begin{flushright}\emph{(Serbia)}\end{flushright}
Izvor: https://www.imo-official.org/problems/IMO2015SL.pdf