IMO Shortlist 2015 problem C5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
30. kolovoza 2018.
LaTeX PDF

The sequence a_1,a_2,\dots of integers satisfies the conditions:

(i) 1\le a_j\le2015 for all j\ge1,
(ii) k+a_k\neq \ell+a_\ell for all 1\le k<\ell.

Prove that there exist two positive integers b and N for which\left\vert\sum_{j=m+1}^n(a_j-b)\right\vert\le1007^2for all integers m and n such that n>m\ge N.

(Australia)

Izvor: https://www.imo-official.org/problems/IMO2015SL.pdf