IMO Shortlist 2015 problem G1
Dodao/la:
arhiva30. kolovoza 2018. Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.
\begin{flushright}\emph{(Australia)}\end{flushright}
Izvor: https://www.imo-official.org/problems/IMO2015SL.pdf