IMO Shortlist 2015 problem G1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
30. kolovoza 2018.
LaTeX PDF

Let ABC be an acute triangle with orthocenter H. Let G be the point such that the quadrilateral ABGH is a parallelogram. Let I be the point on the line GH such that AC bisects HI. Suppose that the line AC intersects the circumcircle of the triangle GCI at C and J. Prove that IJ = AH.

(Australia)

Izvor: https://www.imo-official.org/problems/IMO2015SL.pdf