IMO Shortlist 2015 problem G4
Dodao/la:
arhiva30. kolovoza 2018. Let $ABC$ be an acute triangle and let $M$ be the midpoint of $AC$. A circle $\omega$ passing through $B$ and $M$ meets the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $T$ be the point such that $BPTQ$ is a parallelogram. Suppose that $T$ lies on the circumcircle of $ABC$. Determine all possible values of $\frac{BT}{BM}$.
\begin{flushright}\emph{(Russia)}\end{flushright}
Izvor: https://www.imo-official.org/problems/IMO2015SL.pdf