IMO Shortlist 2015 problem N2


Kvaliteta:
  Avg: 4,0
Težina:
  Avg: 6,0

Let a and b be positive integers such that a! + b! divides a!b!. Prove that 3a \geqslant 2b + 2.

(United Kingdom)

Izvor: https://www.imo-official.org/problems/IMO2015SL.pdf