IMO Shortlist 2015 problem N6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0

Let \mathbb{Z}_{>0} denote the set of positive integers. Consider a function f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}. For any m, n \in \mathbb{Z}_{>0} we write f^n(m) = \underbrace{f(f(\ldots f}_{n}(m)\ldots)). Suppose that f has the following two properties:

(i) if m, n \in \mathbb{Z}_{>0}, then \frac{f^n(m) - m}{n} \in \mathbb{Z}_{>0};

(ii) The set \mathbb{Z}_{>0} \setminus \{f(n) \mid n\in \mathbb{Z}_{>0}\} is finite.


Prove that the sequence f(1) - 1, f(2) - 2, f(3) - 3, \ldots is periodic.

(Singapore)

Izvor: https://www.imo-official.org/problems/IMO2015SL.pdf