IMO Shortlist 2015 problem N7
Dodao/la:
arhiva30. kolovoza 2018. Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer $k$, a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is called $k$-good if $\gcd(f(m) + n, f(n) + m) \le k$ for all $m \neq n$. Find all $k$ such that there exists a $k$-good function.
\begin{flushright}\emph{(Canada)}\end{flushright}
Izvor: https://www.imo-official.org/problems/IMO2015SL.pdf